宇宙

【宇宙のガソリンスタンド計画】ついに始動! 「死んだ衛星」に燃料補給

人口衛星が燃料を使い果たすと、ただの宇宙ゴミ(以降、宇宙デブリ)と化してしまう。

しかし、宇宙機関や民間企業は、この状況を変えようとしている。

科学者たちは、なんと軌道上で人口衛星(以降、衛星)に燃料補給する計画を立てているのだ。

【宇宙のガソリンスタンド計画】

画像: 軌道上で宇宙ゴミを掴むOrbit Fabの宇宙船のイラスト。同社はまた、宇宙で機能しなくなった人工衛星に燃料を補給し、復活させることも目指している。 credit by [Orbit Fab](orbitfab.com)

近年、宇宙開発は新たな時代を迎えており、従来の「打ち上げ、運用、廃棄」というサイクルから、より持続可能な宇宙環境を実現するための技術開発が進められている。

その中でも、衛星燃料補給技術は、宇宙開発の未来を大きく変革する可能性を秘めた技術として注目されている。

本稿では、衛星燃料補給技術の実現に取り組んでいる2つのプロジェクトを紹介する。

衛星にとって燃料切れは深刻な問題

地球上を時速28,200kmという驚異的な速度で周回する衛星にとって、燃料切れは深刻な問題だ。

衛星は、地球の重力に引かれ続け、徐々に高度が低下していくため、軌道を維持するにはエンジンを噴射して速度を上げ、高度を保つ必要がある。

そのため、衛星には燃料が不可欠だ。

燃料が切れると、衛星は高度を維持できなくなり、地球に落下してしまうからだ。

衛星は、通信、放送、気象観測、ナビゲーションなど、さまざまな重要な役割を担っており、衛星の位置や高度の変化、燃料切れによる衛星の落下は、これらのサービスに重大な影響を与える。

また、燃料を使い果たした衛星は「宇宙デブリ」となってしまい、地球周辺の広大なデブリフィールド(宇宙デブリの集積場)に新たなゴミを加えてしまうという問題がある。

しかし多くの場合、燃料が無いことを除けば、衛星は依然として正常に機能していているにも関わらず、廃棄・放置されている。

宇宙空間で燃料を補給する手段がなかったからだ。

人工衛星の燃料切れによって発生しうる問題と、その解決策は次のようなものがある。

問題点

・燃料切れで廃棄される衛星は、まだ機能していることが多い。
・廃棄された衛星は宇宙デブリとなり、地球周辺の環境を悪化させる。
・新しい衛星の打ち上げには、莫大な費用がかかる。

解決策

・衛星の燃料効率を向上させる。
・宇宙空間で衛星に燃料補給する技術を開発する。
・廃棄された衛星を回収・再利用する技術を開発する。

軌道上の死んだ衛星を蘇らせる「衛星燃料補給とサービス」

画像: Orbit Fabの燃料運搬シャトルのイメージ credit by [Orbit Fab](orbitfab.com)

従来、衛星は燃料が尽きると宇宙デブリ化していたが、宇宙産業はこの状況を変えようと、軌道上で衛星に燃料補給やサービスを行うプロジェクトに投資している。

コロラド州に拠点を置くスタートアップ企業「Orbit Fab」は、2025年までに、さまざまなニーズに対応できる「衛星燃料補給サービス」を提供することを目指している。

なんと、燃料の予約注文はすでに開始されており、一般的なロケット燃料であるヒドラジン100キログラムの価格は2000万ドル(約30億円)だ。

同社は、「衛星の再配置サービス」も提供する予定で、これにより衛星の運用期間延長と多様な運営が可能になると期待されている。

Orbit Fab 「宇宙のガソリンスタンド」

【宇宙のガソリンスタンド計画】

画像: Orbit Fabの宇宙ガソリンスタンドのイラスト credit by [Orbit Fab](orbitfab.com)

Orbit Fabは、軌道上に燃料貯蔵タンクを設置し「燃料補給シャトルで顧客の衛星に燃料補給を行う」という方法で、サービスを提供することを目指している。

このサービスを実現するために、同社は2つの重要な技術を開発している。

・RAFTI(Rapidly Attachable Fluid Transfer Interface)

従来の補給・排出口に代わる、あらゆる衛星に使える共通の燃料補給口(インターフェース)。

地上・軌道上のどちらでも利用できることを想定している。

・燃料貯蔵タンク

軌道上に設置される、燃料補給シャトルが燃料を補給するためのタンク。

国際規格を目指す衛星燃料補給インターフェース 「RAFTI」

【宇宙のガソリンスタンド計画】

画像: Orbit Fabのドッキング直前イメージ credit by [Orbit Fab](orbitfab.com)

現在の衛星の燃料補給インターフェースは、ほとんど互換性がない。

燃料補給・排出口の形状などのインターフェースが異なれば、当然補給はできない。

そのため、規格の国際標準化が必要になってくる。

Orbit Fabは、衛星燃料補給インターフェース規格の国際標準化が重要だと認識し、2021年にオープンライセンスのもと「RAFTIの設計図」を公開した。

これにより、誰でもRAFTIを採用した燃料補給インターフェースを製造することが可能になっている。

Orbit Fabによると、すでに100基以上の商用衛星にRAFTIの設計が採用されているという。

しかし、既存の衛星の多くはRAFTIと互換性がないままだ。
また、RAFTIが国際標準として採用されるかどうかは、現時点では未定である。

衛星再配置サービス

画像: Orbit Fabの構想 credit by [Orbit Fab](orbitfab.com)

衛星再配置サービスとは、軌道上の衛星を別の軌道に移動させるサービスで、具体的には、以下の目的で利用されることを想定している。

1. 衛星寿命の延長

衛星は地球の重力によって徐々に高度が低下し、最終的には地球に落下する。衛星再配置サービスを利用することで、高度が低下した衛星をより高い軌道に移動させ、寿命を延ばすことができる。

2. 衛星間の距離調整

衛星間の距離が適切に保たれていない場合、通信品質が低下したり、衛星同士が衝突する可能性がある。衛星再配置サービスを利用することで、衛星間の距離を調整し、これらの問題を防ぐことができる。

3. 故障した衛星の交換

故障した衛星を別の衛星と交換する必要がある場合、衛星再配置サービスを利用することで、新しい衛星を適切な軌道に移動させることができる。

4. 衛星コンステレーションの再編

衛星コンステレーションとは、複数の衛星を組み合わせて一つのシステムを構築するものである。衛星再配置サービスを利用することで、衛星コンステレーションの構成を変更し、システムの性能を向上させることができる。

NASAの衛星燃料補給技術実証ミッション「OSAM-1」

画像: OSAM-1と衛星のドッキングコンセプト画像 credit by NASA

OSAM-1」は、NASAが2026年以降に打ち上げる予定の、「宇宙空間でロボット技術を用いて、衛星に燃料補給を行う技術実証ミッション」であり、実証機の名称だ。

このミッションの注目すべき点は、「燃料補給を想定していない衛星にも燃料補給ができる」技術の実証を目指していることだ。

これが、Orbit Fabが目指しているサービスとは異なる点だ。

OSAM-1は、1999年に打ち上げられた地球観測衛星「Landsat 7」に燃料補給を行うことで、その能力を実証する予定である。

さらに、このミッションでは、SPIDER(Space Infrastructure Dexterous Robot)と呼ばれる別のロボットを展開し、宇宙空間で新しい構造物を建造するという、新技術の実証も行われる予定だ。

ロボットを使ってゼロから新しい構造部品を製造し、組み立てることは、これまでは不可能だった宇宙空間での建設技術向上への重要な一歩となる。

なお、OSAM-1は当初、2026年の打ち上げが予定されていたが、報道によると遅延と予算超過が発生しているようだ。

さいごに

現在、各国機関や民間企業がさまざまな技術開発を進めており、今後数年の間に大きな進展が見込まれているが、その中でも衛星の燃料補給技術は、宇宙開発の未来を大きく変革する可能性を秘めている。

もし、この技術が実用化されれば、衛星の寿命延長やそれに伴う宇宙デブリ削減など、多くのメリットが期待できる。

しかし、燃料補給を行うにはアームなどで衛星を捕捉し、断熱材やケーブルを切断して燃料タンクにアクセスし、ボルトなどを外してホースを接続し、ヒドラジン燃料を注入するという、複雑な一連の作業となるはずだ。

しかも、安全を確保する必要もある。

実現には大変な困難が予想されるが、ぜひ頑張っていただきたい。

衛星燃料補給技術の進歩によって、宇宙空間はより「持続可能」な環境へと変化していくだろう。

参考 :
Orbit Fab | Spacecraft Refueling
RAFTI™ — Orbit Fab | Spacecraft Refueling
On-orbit Servicing, Assembly, and Manufacturing 1 (OSAM-1) – NASA

 

lolonao

lolonao

投稿者の記事一覧

フィリピン在住の50代IoTエンジニア&ライター。
antiX Linuxを愛用中。頻繁に起こる日常のトラブルに奮闘中。二女の父だがフィリピン人妻とは別居中。趣味はプチDIYとAIや暗号資産、マイクロコントローラを含むIT業界ワッチング。

✅ 草の実堂の記事がデジタルボイスで聴けるようになりました!(随時更新中)

Audible で聴く
Youtube で聴く
Spotify で聴く
Amazon music で聴く

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

関連記事

  1. JAXAの小型月着陸実証機(SLIM)の続報
  2. 人は宇宙服を着ずに、宇宙でどれくらい生きられるのか?
  3. 宇宙の果て について調べてみた 「470億光年離れた場所?」
  4. 「2024年も続くアメリカのハイテク企業の人員削減」 NASAの…
  5. 【現代版ノアの箱舟】中性子星が地球に接近したら人類はどうする?
  6. 日本人初の宇宙飛行士が発した第一声とは?
  7. SLIM発電開始!逆さに着陸したJAXAの小型月着陸実証機(SL…
  8. 木星の衛星「エウロパ」で生命の可能性 【ジェイムズ・ウェッブ宇宙…

カテゴリー

新着記事

おすすめ記事

蘇我氏にまつわる謎を探る! 石積みの方墳「都塚古墳」の被葬者は誰だ?

石舞台古墳の南東に存在する都塚古墳飛鳥時代前期の大権力者といえば、蘇我馬子の名が挙がるこ…

「ぼーっとする時間」と「毎日25分の散歩」が人生の成功をもたらす? 時間の質を上げる5つの習慣

「時間の使い方が人生の成功を左右する」と言われるように、限られた人生の時間をいかに有効活用す…

ソンムの戦い について調べてみた 【世界初の戦車・実戦投入】

※イギリス軍の塹壕1916年7月1日から同11月19日までフランス北部・ピカルディ地方を…

「不死身の鬼美濃」の異名を取った強者・馬場信春

不死身の鬼美濃馬場信春(ばばのぶはる)は、甲斐武田家の信虎・信玄・勝頼の3代にわたって仕えた…

タブレットを選ぶポイントは? matepad は要チェックです!

持ち運びできるし見た目にもおしゃれなタブレット。1つ持っているととても便利です。いざ購入…

アーカイブ

PAGE TOP